
 

Deep-Learning-Based Age Estimation From Brain 
MR Images 

Nyeli Kratz 

 
 

 
 

 

 

Abstract—Brain age estimation could aid in the diagnosis of 
neurodegenerative diseases. This paper presents an algorithm 
which predicts age based on brain MR images. A description of 
the data set is presented, followed by an overview of prior work 
done on brain MRI segmentation and age estimation. The paper 
then discusses our algorithm which uses multi-atlas segmentation 
followed by a deep learning network to predict age. Evaluation 
experiments are discussed followed by a summary of the 
contributions by each team member.  The team was able to create 
an algorithm that predicts age based on brain region volume with 
a final testing RMSE of 15.73 years. 

I. INTRODUCTION 

Over the past few decades, enormous progress has been 
made in imaging brain injury and anatomy through MRI. Prior 
research has shown structural changes in human brain MRIs 
with chronological age [1]. Based on these structural changes, 
estimation of age from brain MRIs has attracted more attention 
in recent years. Brain age estimation could aid in the early 
diagnosis of neurogenerative diseases such as Alzheimer’s, 
Parkinson’s, and Multiple Sclerosis [2]. Traditionally, 
segmentation of brain MR images is done manually, which 
results in some variation due to personal opinion. Additionally, 
manual brain MRI segmentation requires considerable time and 
effort and is thus impractical for large data sets [2]. Therefore, 
the team developed an algorithm which uses registration to 
apply the manual segmentations of a few volumes to many other 
volumes. In this paper, I present our fully-automated algorithm 
which segments 3D brain MR images and reports estimated age 
based on the segmentation and other features extracted from the 
MRI. 

II. BACKGROUND AND THEORY 

A. Dataset Description 

We have been provided with a set of atlases containing 40 
volumes in the form of T1-weighted images which were 
registered to the MN1152 template with a resolution of 0.8mm 
and preprocessed with N4 inhomogeneity correction and white 
matter peak normalization. We have also been provided with the 
corresponding manual delineations of these volumes segmented 
in 207 subregions represented by different integer labels. Figure 
1 shows the T1-weighted axial view of the MR image next to its 
corresponding manual delineation. We have also been provided 
with a training set of 500 other volumes in the form of T1-
weighted MR images registered to MN1152 template with a 
resolution of 1 mm along with a .csv file containing the age of 
the patient for each MRI ranging from 19 to 86 years old which 
corresponds to each of the training volumes.  

B. Prior Work on Brain MRI Segmentation 

Various models have been proposed for the segmentation of 
brain MR images including Markov random field (MRF) 
models, multimodal segmentation, deep learning methods, and 
multi-atlas segmentation. Unlike other imaging applications 
where convolutional neural networks (CNNs) have largely 
outperformed other segmentation methods with the increase in 
computer processing capabilities in the past few decades, CNNs 
have remained comparatively less successful in brain MRI 
segmentation. This is likely due to the fact that manual 
delineation of whole-brain volumes is very time consuming and 
requires significant expertise, leading to a small training set 
being available for this data. Multi-atlas has often outperformed 
deep-learning-based approaches in brain MRI segmentation [3]. 

Fig. 1. T1-weighted axial view of brain MRI raw data (left) and manually 
delineated data (right).  

C. Prior Work on Brain Age Estimation 

In regards to deep learning algorithms, both classification 
and regression models have been explored extensively for 
brain age estimation based on MRI data with significant 
success. Shallow learning methods have been used such as 
Gaussian processes regression (GPR) and Support vector 
regression (SVR) [4]. Other strategies such as Hidden Markov 
Models and Random Forests have also been used with 
significant success. The team moved forward with a neural 
network regression method of brain age estimation based on 
the success of [5] and also due to the team’s experience 
building similar models. 

III. METHODS 

A. Skull-stripping Method 

The team developed a novel method for skull-stripping 
which achieved satisfactory results on about 70% of the training 

  



data. This method binarizes the image based on a low starting 
threshold intensity and then calculates the number of connected 
components in the image. This initial number of connected 
components is always one due to the starting threshold intensity 
being only slightly higher than the background intensity. The 
threshold intensity then increments until there are two different 
connected components in the image. It is assumed that one of 
these connected components represents the skull while the other 
represents the brain because in most images in the data set, a 
dark volume of CSF separates the brain from the skull and is 
thus the first part of the anatomy to fall below the binarizing 
threshold.  

The connected components were labelled using bwlabeln 
which allowed the outermost white voxel group to be identified 
as the skull and removed from the image. A spherical structuring 
element is then created and used to dilate the brain mask to avoid 
losing brain image information in images where the intensities 
of the edges of the brain are very similar to that of the CSF. 

This method relies on the assumption that the CSF is darker 
than all other tissue inside of the skull and separates the brain 
from the skull at all points in 3D space. For some images in the 
training set this was not the case, and thus our method performed 
very poorly for some images. For this reason, the HD-BET 
package was used to strip the skulls from the images which were 
fed into the registration.  

B. Registration 

Splitting the atlases into random sets prior to multi-atlas 
segmentation has been shown to outperform using all 
available atlases for each segmentation [6]. Therefore, of the 
40 provided label atlases, six random atlases were chosen for 
multi-atlas segmentation. These six atlases were registered to 
the skull-stripped image using an affine transformation. Six 
atlases were chosen in order to manage the tradeoff between 
computation time and segmentation results. The affine 
transformation is a time-consuming process and the 
registration required about 13 minutes with 6 affine 
transformations. It was decided that any extra accuracy 
afforded by additional atlas registration was not worth the cost 
of computational time. 

Fig. 2. Skull-stripped MR Image overlaid on atlas registered to the image 
using an affine transformation. 

Alternatively, the team considered utilizing the 
voxelmorph package for registration which would have 
required significant training time, but would have registered 
images significantly faster after it was trained. Additionally, 

the voxelmorph package is based on diffeomorphic rather than 
affine registration, which has been shown to be more effective 
in inter-subject registration [7]. Ultimately, the team decided 
not to pursue the voxelmorph package due to time constraints 
and a lack of experience with similar models. It was decided 
that a good method for label fusion could make up for any 
inaccuracies in affine registration. 

C. Label Fusion 

Majority voting is a simple strategy and has shown to be 
very effective in brain multi-atlas segmentation [8]. For this 
reason, majority voting from each of the 6 atlases was utilized 
to label each voxel of the input image, resulting in a 
segmented volume. Figure 3 shows an example output 
segmentation from this algorithm. 

Fig. 3. Sagittal (left) and axial (right) segmentation example produced by 
this algorithm. 

The team also considered a weighted voting label fusion 
method where the atlases which are most similar to the image 
get more votes than those which are less similar. The team 
briefly implemented this strategy using the sum of squared 
difference as a similarity metric and giving the most similar 
atlas 5 votes, the next most similar 4 votes, the next most 
similar 3 votes and the other atlases only one vote each for 
each voxel. In our initial experiments, the segmentation results 
did not improve enough to justify the cost of computation 
time. Had the team been able to reduce the computation time 
of the registration, this strategy may have been more feasible. 
With more time, the team would have adjusted the weighting 
and pursued this approach more thoroughly. 

D. Age Estimation 

 The age estimation network is based on prior research which 
shows that brain age is associated with the volume of specific 
regions of the brain [1]. For instance, because the hippocampus 
is related to memorization, one might expect to see a decreased 
hippocampus volume in older brains.  

 Gray matter and white matter volume were extracted from 
the T1-weighted MRI because these features have proven useful 
in brain age estimation in previous works [5]. These features 
were extracted directly from the raw MRI data based on tissue 
intensity to avoid the deformation which is introduced by the 
segmentation method. The gray matter and white matter volume, 
along with volumes of each of the 207 regions labeled by the 
segmentation portion of the algorithm, were fed into a neural 
network along with their associated age to create a network 

   

   



which predicts age. By processing scalar volumes as opposed to 
3D images, the training speed of the algorithm is greatly 
increased. However, in this process, 3D information is lost such 
as label location and shape, which could decrease the accuracy 
of the network. 

 The final network architecture consists of five layers. First a 
fully connected later with 20 nodes to reduce the number of 
features, then a batch normalization, followed by a RELU 
activation layer, then a fully connected layer, and finally an 
output layer. The network was trained on 100 segmentations due 
to time limitations associated with the segmentation portion of 
the algorithm and 23 other segmentations were held out for 
validation. 

IV. EXPERIMENTS AND REUSLTS 

A. Skull-stripping Method 

To test the novel skull-stripping method, the team 
compared the results of brain masks generated using our 
method to those generated by HD-BET, a popular and well-
established skull-stripping package. For 70% of the training 
data, the dice coefficient between the team’s mask and the 
HD-BET mask was greater than 0.90, indicating very good 
overlap. However, for the remaining 30% of the training data, 
the dice coefficient was as low as zero, indicating zero 
overlap. Our novel skull-stripping method works very well in 
cases where our assumptions hold and very poorly in cases 
which they do not. 

B. Segmentation 

To test the segmentation method, the team used our 
affine registration and majority voting label fusion method to 
segment a volume with an associated manual delineation. We 
then calculated the dice coefficient between the segmentation 
and the ground truth manual delineation. For the two provided 
test segmentations, the average dice coefficient between our 
segmentation and the ground truth was 0.42 and 0.44, 
indicating fairly poor overlap in most regions of the 
segmentation. Figure 4 shows an example of a segmentation 
produced by our method compared to its associated ground 
truth manual delineation. 

Fig. 4. Segmentation produced by our algorithm (left) compared to the 
ground-truth manual segmentation (right). 

The age prediction network was initially evaluated 
based on training error vs. iteration, as shown in figure 5. The 

final training RMSE was about 14 years and stabilized after 
about 500 iterations. 

Fig. 5. RMSE vs. Iteration for age prediction network training data. 

To further evaluate the age prediction method, the 
team held out 23 segmentations with their associated gray 
matter and white matter volume from the training set and then 
ran these images through the age prediction algorithm. The 
average RMSE of these held out test images was 6.4 years. 
The fact that the testing RMSE is lower than the training 
RMSE indicates that the model is not overfitted, however this 
test set is too small to draw significant conclusions. Figure 6 
shows a plot of actual age vs. predicted age for this validation 
data.  

 
Fig. 6. RMSE vs. Iteration for age prediction network training data. 

V. DISCUSSION 

A. Skull-stripping Method 

The skull-stripping method developed by the team relied 
on the assumption that the CSF was darker than all other 
tissues and that the CSF consistently separated the brain from 
the skull in 3D space. This assumption allowed the team to 
develop a very fast algorithm that is quite effective for most 
images in the training set, but this assumption does not hold 
for all images in the set. For this reason, the skull-stripping 
method developed by the team was only effective for about 
70% of the training data set. For 70% of the training data set, 
the dice coefficient was above 0.90, however because the dice 
coefficient was very low on the remaining 30% of the data, the 
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overall average dice coefficient was only about 0.65 across all 
training data. Ultimately, a threshold-based skull stripping 
method is not robust to data with different intensity ranges.  

B. Segmentation 

The average dice coefficient of our segmentations was 
about 0.40, which was lower than the team would have liked.  
Our segmentation algorithm could have been improved 
significantly by a diffeomorphic registration method as 
opposed to the affine registration that we used. Additionally, 
the computation time for the segmentation portion of our 
algorithm was longer than we would have liked. With more 
time, the team would have pursued a deep-learning-based 
diffeomorphic registration package such as voxelmorph or 
ANTS, which would have likely proven both faster and more 
accurate than the current affine registration method. 

C. Age Estimation 

The team aimed to create a network with an RMSE of less 
than 10 years, as this is moderately successful when compared 
to other recent segmentation-based brain age prediction 
algorithms [9]. However, the actual RMSE of our network 
was 14 years across the training data. The testing RMSE of the 
network was only 6.4 years. However, the small held out 
testing set of only 23 images makes the team hesitant to 
conclude that this algorithm can consistently predict age with 
an RMSE of 6.4 years. 

The accuracy of the age estimation portion of the 
algorithm is highly dependent upon the accuracy of the 
segmentation and therefore was impacted by our relatively 
poor segmentation results. Additionally, training the network 
on a larger set would have likely improved the accuracy of the 
network. However, the team was able to create a fully 
automated algorithm which is able to segment 15 brain MRIs 
and make an age prediction based on the data within the time 
constraint of 24 hours. 

D. Demo Day Results 

The team’s skull-stripping algorithm was not compatible 
with the 5 provided segmentation images, so the team used HD-
BET as a skull-stripping method for the segmentation images. 
However, the skull-stripping method was successful for 9 of the 
15 provided age images and because our skull-stripping method 
is significantly faster than HD-BET, this method was used to 
skull-strip 9 of the 15 age prediction images. 

Our algorithm was able to segment and predict ages for 15 
images as well as segment an additional 5 images within the 
allotted 24-hour time constraint. On the final testing set, our 
average segmentation dice score was 0.3642, which was 
relatively low compared to other teams, but expected based on 
our initial results. Our RMSE age error was 15.73 years which 
was similar to our training error and thus also expected. Overall, 
the team ranked 5th out of seven teams, which we are happy 
with considering that we are one of only two undergraduate 

teams and made up of only three members. Future work to 
improve our multi-atlas segmentation method includes 
implementing a diffeomorphic registration method and 
pursuing weighted voting for label fusion. An improvement in 
our segmentation method would likely also increase the 
accuracy of our age prediction network. 

VI.  TEAM MEMBER CONTRIBUTIONS 

I was primarily responsible for project 2 task A and project 
1 task B. I created a relatively successful skull stripping method 
as well as a registration and label fusion segmentation method 
for project 2. I also created a method to identify the EDV and 
ESV contours in project 1 and estimate ejection fraction. 

Table 1 indicates the primary responsibilities of each team 
member. Tasks are assigned as indicated with an “X” in the 
table, however team members contributed to other parts of the 
project when needed. 

TABLE I.   

Team 
Member 

Project 1 
Task A 

Project 1 
Task B 

Project 2 
Task A 

Project 2 
Task B 

Nyeli 
Kratz 

 X X  

Sharon 
Reitsma 

X    

Jiayin 
Qu 

   X 
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